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Abstract. Compact directed percolation is known to appear at the endpoint of the directed
percolation critical line of the Domany–Kinzel cellular automaton in 1+ 1 dimension.
Equivalently, such transition occurs at zero temperature in a magnetic fieldH , upon changing
the sign ofH , in the one-dimensional Glauber–Ising model, with well known exponents
characterizing spin–cluster growth. We have investigated here numerically these exponents in
the non-equilibrium generalization of the Glauber model in the vicinity of the parity-conserving
phase transition point of the kinks. Critical fluctuations on the level of kinks are found to affect
drastically the characteristic exponents of spreading of spins while the hyperscaling relation
holds in its form appropriate for compact clusters.

1. Introduction

In the one-dimensional (1D) Domany–Kinzel automaton (DKCA) [1, 2] the stateσ(i, t)

of site i at time t depends onσ(i − 1, t − 1) + σ(i + 1, t − 1), (σ(i, t) = 0, 1). Of the
conditional probabilitiesp(σ(i − 1, t − 1)σ (i + 1, t − 1)|σ(i, t)) the independent ones are
denoted byp0 = p(00|1), p1 = p(01|1) = p(10|1) and p2 = p(11|1). All sites are
updated simultaneously in the process. The phase diagram of the DKCA in the(p1, p2)

plane, exhibits a line of (second-order) critical points of directed percolation universality
class, which line ends at the so-called compact directed percolation point (CDP). This point
is situated on the linep2 = 1, p0 = 0 at p1 = 1

2. By crossing this point (changing the
sign of p1 − 1

2) the transition is a first order one between two ordered phases (empty and
full or, equivalently, using the spin variables(i, t) = 2σ(i, t)− 1, all spins up and all spins
down). The characteristic critical exponents of the CDP transition are known exactly and a
hyperscaling relation has also been derived for such transitions ind dimensions [1, 3]. For
the spreading process of a singleσ(i, 0) = 1 in the sea of zeros the exponentsδs , ηs and
zs defined at the transition point for the power-law time dependences of the density of 1’s
ns ∝ tηs , the survival probabilityPs(t) ∝ t−δs and the mean square distances of spreading
〈R2

s (t)〉 ∼ t zs have been obtained as 0,1
2 and 1, respectively [3]. (In the following subscript

s refers to spins for all the quantities. Without subscript the corresponding quantity for kinks
is meant, except forν.) For the parallel (time-direction) and perpendicular (space-direction)
coherence lengthsν‖ andν⊥ resp., as well as for the dynamical critical exponentZ Domany
and Kinzel have obtained the exact results:ν‖ = 2, ν⊥ = 1, Z = 2, respectively (which
means only two exponents as by definitionν‖ = Zν⊥). The above-mentioned hyperscaling
law [3]

ηs + δs = dzs/2 (1)
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is fulfilled with the above exponents. More generally, Dickman and Tretyakov argued, that
equation (1) is valid at first order transitions and it should apply to cases, whenever power-
law growth produces compact ‘colonies’, developing from single seeds. In [3] ‘compactness’
is clearly defined: it is meant that the density of colonies in surviving samples remains finite
for t →∞.

It is obvious that the above-sketched (1+ 1)-dimensional CDP transition is equivalent
to that in the 1D (ferromagnetic) Glauber–Ising model [4] atT = 0, because the symmetry
as well as the kinetics are the same. Changing the parameterp1 of the DKCA around
p1 = 1

2 corresponds to introducing a magnetic fieldH into the spin–flip probabilitywi of
the Glauber–Ising model (section 2) and changing its sign.

On the basis of this equivalence it is of some interest to investigate the same spreading
problem in the framework of the non-equilibrium generalization [5, 6] of the kinetic Ising
model (NEKIM) (section 3), where, in some range of its parameters, there is a continuous
transition between a single domain and a multidomain state. The order parameter of this
transition is the density of kinks. The critical fluctuations of this so-called parity-conserving
(PC) transition [7, 8, 6, 9–11] have pronounced effects on the underlying spin system, as was
found earlier [12] both in case of static and dynamic exponentsin situations of quenching
from T = ∞ (random initial states). These investigations will now be completed by
studying, via numerical simulations, the spin spreading process at the PC point (section 4).
It is found that the characteristic exponents differ from those of the CDP transition, as could
be expected, but basic similarities still remain. Thus, the transition which takes place upon
changing the sign of the magnetic field is of first order and its exponents satisfy equation (1).
Accordingly it can be called ‘compact’, and we will call it compact parity-conserving (CPC)
transition†. The static magnetic critical exponent1 is also determined at the PC point.

2. Glauber–Ising model

The d = 1 Ising model with Glauber kinetics is exactly solvable. In this case the critical
temperature is atT = 0, the transition is of first order. We recall thatpT = e−

4J
kT

plays the role ofT−Tc
Tc

in one dimension and in the vicinity ofT = 0 critical exponents
can be defined as powers ofpT , thus for example that of the coherence length,ν, via
ξ ∝ pT −ν . In the presence of a magnetic fieldH , (when the Ising Hamiltonian is given by
H = −J∑i sisi+1−H

∑
i si , si = ±1), the magnetization is known exactly. AtT = 0

m(T = 0, H) = sgn(H). (2)

Moreover, forξ � 1 andH/kT � 1 the the exact solution reduces to

m ∼ 2hξ h = H/kBT . (3)

In scaling form one writes:

m ∼ ξ− βs
ν g(hξ

1
ν ) (4)

where1 is the static magnetic critical exponent. Comparison of equations (3) and (4)
results inβs = 0 and1 = ν. These values are well known for the 1D Ising model. It is
clear that the transition is discontinuous atH = 0 also when changingH from positive to
negative values, see equation (2). (In the following the order of limits will always be meant
as: firstH → 0 and thenT → 0.)

† In a previous paper of the present authors [13], devoted to damage spreading investigations of different non-
equilibrium one-dimensional models, the issue of a CPC transition has already been raised.
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The kinetics of the Ising model in a magnetic field has been formulated by Glauber [4].
In its most general form the spin–flip transition rate for spinsi sitting at sitei is:

wi
h = wi(1− tanhhsi) ≈ wi(1− hsi) (5)

wi = 0

2
(1+ δ̃si−1si+1)

(
1− γ

2
si(si−1+ si+1)

)
(6)

whereγ = tanh 2J/kT (J denoting the coupling constant in the Ising Hamiltonian)0 andδ̃
are further parameters. This model will reach the same equilibrium state as the Ising model
in a magnetic field.

For the casẽδ = 0, 0 = 1.0, which is usually referred to as the Glauber–Ising model,
Z = 2 (Z is the usual dynamic critical exponent) is also a well known result. In section 3
we will give a brief review of the non-equilibrium generalization of the kinetic Ising model
which will be used later.

3. The non-equilibrium generalization model

In the non-equilibrium generalization model (NEKIM), besides the spin–flip transition rate
equation (6), taken atT = 0, also a nearest-neighbour mixing of spins with probability
pex is applied at each timestep of the simulation. The spin–exchange transition rate of
nearest-neighbour spins (the Kawasaki [14] rate atT = ∞) is wii+1 = 1

2pex [1 − sisi+1],
wherepex is the probability of spin–exchange. Spin–flip and spin–exchange are then applied
alternately. The model was originally proposed and investigated for valuesδ̃ > 0 at finite
temperatures in [5]. It is , however, atT = 0 and for negative values of̃δ, that in this
system a second order phase transition takes place [6] for thekinks from an absorbing to an
active state, which belongs to the PC universality class. The order parameter is the density
of kinks, at the PC point it decays in time as a power lawnkink ∝ t−α, with α = 0.285(3).

The absorbing phase is double degenerate, an initial state decays algebraically to the
stationary state, which is one of the absorbing ones (all spins up or all spins down, provided
the initial state has an even number of kinks) and the whole absorbing phase behaves like
a critical point with power-law decay of correlations, like the Glauber–Ising point (δ̃ = 0,
pex = 0).

Now let us look at the PC transition from the point of view of the underlying spin
system. The above-mentioned first-order transition atT = 0 of the Ising system disappears
at the PC point and is, of course, absent in the whole active phase of the kinks. The
fluctuations of this PC transition exert a pronounced effect on the underlying spin system
as found earlier [12] thus, e.g. the the classical dynamical exponentZ, defined, as usual
through the relaxation timeτs of the magnetization,τs ∝ ξZ, was found to beZ = 1.75(1)
instead of the Glauber–Ising value ofZ = 2. In this case one approaches the PC point from
the temperature ‘direction’, by decreasing it to 0 (the effect of temperature is to create kink
pairs inside of ordered spin domains). On the other hand, we can also look at the transition
by changing a characteristic parameter (chosen by us to beδ̃) of NEKIM through the critical
point δ̃c and fixing the other two. As a function ofε = |(δ̃ − δ̃c)| the transition—on the
level of spins—is again a first-order one of type order-disorder. Namely, taking initial states
with an even number if kinks, the magnetization of the stationary state has a jump atε = 0.
The same is true when changing the magnetic fieldh from negative to positive values at
ε = 0. Thus for the spins the value of the (static) critical exponentβs is zero, in all the three
‘directions’ of departing from PC (pT , ε and h), as mentioned above. (For simulational
results see [12, 13].)
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Figure 1. Local slopes of the spin densityns(t) for zero magnetic field near the PC point.
−δ̃ = 0.393, 0.394, 0.395 (from bottom to top). The best scaling result isηs = 0.288(4). In the
averaging the number of independent runs was 3–5× 106.

Figure 2. Local slopes of the survival probabilityPs(t) for zero magnetic field in the vicinity
of the PC point. −δ̃ = 0.393, 0.394, 0.395 (from bottom to top). The best scaling result is
δs = 0.287(3). In the averaging the number of independent runs was the same as for figure 1.

In the following we will choose the same PC transition point as in previous works
[6, 12], and make simulations at and around this point by changing the magnetic fieldh.
The parameters chosen are:0 = 0.35, pex = 0.3, δ̃c = −0.395(2). In these previous
simulations the spin–flip part has been applied using two-sublattice updating. After that
we have stored the states of the spins and madeL (L is the size of the system) random
attempts of exchange using always the stored situation for the states of the spins before
updating. Together all these have been counted as one timestep of updating. (Usual Monte
Carlo update in this last step enhances the effect ofpex and leads tõδc = −0.362(1).)

4. Spin-cluster-growth simulations

Time-dependent simulations have proven to be a very efficient method for determining
critical exponents (besides the critical point itself) [15–17]. On the basis of equation (4),
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Figure 3. Phase diagram of NEKIM in the(h,−δ̃) plane. The chosen PC-point is atδ̃ = −0.395.
For lower values of−δ̃, in the Glauber–Ising regime, the vertical line connecting the PC and
the NGI points (ath = 0.0) consists of all CDP points with its characteristic critical exponents.
The simulations around the PC point have been done here forh > 0 in the interval 06 h 6 0.1.
The other parameters of NEKIM in the whole plane are as follows:0 = 0.35 andpex = 0.3.

the t-dependence of the magnetization in scaling form can be written as

m(t, h) ∼ t− βs
νZ g̃(ht

1
νZ ). (7)

Such a form can be used in a quench fromT = ∞ to Tc and was exploited also in [12],
though ath = 0, using temperature as a second variable, for determining mainly static
critical exponents of the spins at the PC point.

In the following we will further study the influence of the PC transition on the spin
system from a different point of view. Instead of starting with an initial state of randomly
distributed up- and down-spins with zero average magnetization as in the above-mentioned
simulations of quenching, we will now investigate the evolution of the non-equilibrium
system from an almost perfectly magnetized initial state (or rather an ensemble of such
states). This state is prepared in such a way that a single up-spin is placed in the sea of
down-spins atL/2. Using the language of kinks (or particles, in the branching annihilating
random walk (BARW) model [18, 9]) this corresponds to the usual initial state of two
nearest-neighbour kinks placed at the origin. The quantities usually measured of the forming
clusters are the order-parameter density, the survival probabilityP(t) and the average mean
square size of spreading〈R2(t)〉 from the centre of the lattice. At the critical point these
quantities exhibit power-law behaviour in the limit of long times; more generally we can
write

ns(t, h) ∼ tηs g1(ht
1
νZ ) (8)
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Figure 4. The scaling functionns(t) ∝ tηs and Ps(t) ∝ t−δs at the NGI point of figure 3
(pex = 0.3, δ̃ = 0). The power-law fit of the data shown givesηsNGI = 0.0006 and
δs

NGI = 0.500(5). Number of independent runs in the averaging was (10–60)× 104.

for the deviation of the spin density from its initial value,ns = m(t, h)−m(0),
Ps(t, h) ∼ t−δs g2(ht

1
νZ ) (9)

for the survival probability and

〈Rs2(t, h)〉 ∼ t zs g3(ht
1
νZ ) (10)

for the average mean square distance of spreading from the origin. The argument of the
scaling functions above has been taken from equation (7); but now at the PC point instead of
the Glauber–Ising one. Thus the exponents1, ν andZ in the above equations take values
appropriate at the PC point. We note here that the coherence length exponentν appearing
above is basically different from theν⊥ and ν‖ generally used in the context of directed
percolation (DP) transitions or in connection with thekinks in NEKIM. Namely, ξ⊥ ∝ ε−ν⊥
with ε denoting the deviation from the PC point in the ‘direction’ of the quantity driving
the phase transition (ε = |δ̃ − δ̃c| here). Moreover,ν‖ = ν⊥Z. (Z is, of course, independent
of the above-mentioned ‘directions’ [12].)

We have measuredns(t) andPs(t) at and in the vicinity of the critical point with initial
configuration of a single up-spin at the origin in the sea of down-spins and allowing the
system to evolve according to the rule of NEKIM as described above. Averaging has been
taken over runs with different sequences of random numbers during the evolution. Figures 1
and 2 show the local slopes (for a definition see, e.g. [9])ηs and−δs , respectively. As
the survival probability must be the same for spins and kinks (if the minority spin dies
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Figure 5. Level-off values of the survival probabilityPs(t, h) for large times at different values
of h. The straight line (a) is power-law fit near the PC point withβs ′ = 0.445(5). Points around
the straight line (b) show simulational results of the same quantity for the NGI point, giving
βs
′NGI = 0.99(2). Number of independent runs in the averaging was 104–105.

out, kinks also disappear and vice versa)δs = δ. The same applies also for the root mean
square size of the cluster. As no result has been reported before forδ in the NEKIM model,
exhibiting figure 2 has its own merits.ηs , however, is an independent new exponent.

(Besides results at the PC point we have also carried out detailed simulational studies at
a point in the so-called Ising phase, namely forδ̃ = 0, 0 = 0.35 andpex = 0.3. This point
is a non-equilibrium one due to the non-zero value ofpex , and is marked on figure 3 with
NGI (non-equilibrium Glauber–Ising) on the abscissa. The results which we have obtained
via simulations at this point (figure 4) are, within error, the same as for the (exactly solved)
Glauber–Ising case.)

Figure 5 shows the the asymptotic values for large times ofPs(t, h), for different values
of h in the range ofh = 0.005− 0.1. For the exponentβs ′ defined through

lim
t→∞Ps(t, h) ∝ h

βs
′

(11)

the valueβs ′ = .445(5) has been obtained. Figures 6 and 7 show the scaling functions,
equations (8) and (9), respectively. Here the best fit for the scaling together of data with
different values ofh could be achieved with1 = 0.49(1), using the measured values
δs = 0.285, ηs = 0.285, and that ofνZ from former studies,νZ = 0.777 [12]. Data for
different values ofh scale together sufficiently well when considering the relatively poor
statistics (averages over 4× 104 samples, typically).
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Figure 6. The scaling functionns(t, h). The different curves correspond to the following values
of the parameterh: h = 0.05, 0.01, 0.009, 0.003, 0.001, 0.0005. The values of the parameters
ηs , 1 andνZ are given in the text. Number of independent runs in the averaging was 4× 104.

The scaling law

βs
′ = δsνZ

1
(12)

following from equation (9) is satisfied with the above values of the exponents, within error.
We note here thatβs ′ can be connected withβkink = βkink

′, using in equation (12)δs = δ
and the definition ofβkink

′ from [19] with the result:βs ′ = βkinkν/(ν⊥1).
The hyperscaling law for the spreading exponents was derived in its most general form

by Mendeset al [19] which we write here for the spin quantities:(
1+ βs

βs ′

)
δs + ηs = dzs/2. (13)

In equation (13), in analogy with the spin-cluster-growth description at and in the vicinity of
the CDP transition of the DKCA [3], the above finite value ofβs ′ enters. (As explained in
the introduction,(p1− p1c) of the DKCA, withp1c = 1

2, corresponds toh in the Glauber–
Ising formulation.) Moreover,βs = 0, which value follows near the PC point from the same
symmetry consideration as at the Glauber–Ising point (though does not in the active phase).
Here, again, one should recall the above-mentioned analogy between the DKCA’s variable
(p1 − 1

2) and the variableh in this case. With the exponents obtained and summarized in
table 1 equation (13) is fulfilled. As already mentioned in the introduction, according to the
argumentation of [3] the fulfilment of the hyperscaling law in the above form is equivalent
to compactness of the clusters. For illustration developing clusters are exhibited on figure 8



Compact parity-conserving percolation in one dimension 6779

Figure 7. The scaling functionPs(t, h). The values of the parametersηs , 1 andνZ used are
given in the text. Number of independent runs and values ofh are the same as for figure 6.

Table 1. Spin-cluster critical exponents for NEKIM in a magnetic field.

βs ν βs
′ 1 ηs δs zs

NGI–CDP 0 1
2 0.99(2) 1

2 0.0006(4) 0.500(5) 1(= 2/Z)
CPC 0.00(2) 0.444 0.45(1) 0.49(1) 0.288(4) 0.287(3) 1.14(= 2/Z)

under three conditions: (a) Glauber case (CDP in the DKCA sense), (b) at the NGI point
(see figure 3) where the kinetics is a non-equilibrium one (pex 6= 0) and (c) at the PC point.
It is apparent that the minority phase never develops inside of the majority one, moreover,
the branching process present in the kinetics in cases (b) and (c) makes the flat pieces of
CDP boundaries fringed.

The results together with some of the critical exponents obtained earlier in [12] are
summarized in table 1.

5. Summary

In summary, we have carried out numerical studies of the power-law behaviour of spreading
of spins, at the PC transition point of NEKIM (where a second-order transition occurs on the
level of kinks). It has been found that the analogue of the Domany–Kinzel CDP transition—
a first-order transition upon changing the sign of an applied magnetic field—still exists. Of
the three exponents measured only1, which is the static magnetic exponent of the Ising
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Figure 8. Clusters developing from a single up-spin (dark point) in the sea of down-spins (white
points) att = 0 for three choices of NEKIM parameters, see text.

model, was found to be unaffected by the critical fluctuations of the kinks within error.
In view of other static Ising exponents, this circumstance is not so natural, such as the
coherence length exponent is a counterexample (see [12] and table 1). Consequently the
relation1 = ν valid in the Glauber–Ising case is no more fulfilled at the PC point.βs

′

characterizing the level-off values of the survival probability of the spin clusters is a new
(static) exponent;1 and βs ′ are connected by a scaling law. The third exponent,ηs has
proven to be numerically equal toδs = δ thus ensuring that the hyperscaling law is fulfilled
in a form appropriate for first order transitions and compact clusters [19, 3]. Moreover, we
have reported results of simulation for exponentδ in case of NEKIM for the first time.

These results give further evidence to the conclusion that the effect of fluctuations felt
by the spin system at the PC transition is of interest in itself.
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